Amir Mohammad Lor QUANTUM SMC PRO ® – 2025 LAUNCH
- Current time: November 10, 2025 09:17 AM CET
- Country: DE
★★★ FREE FOR FIRST 5,000 USERS – THEN LOCKED FOREVER! ★★★
● 100% NON-REPAINT
● 38 Order Block types + Smart FVG + Real-time Liquidity Sweep
● BOS / CHoCH / EQH / EQL / Mitigation / Imbalance / Grab
● LIVE 97.3% Win-Rate Dashboard (6-month verified backtest)
● Sound + Push + Webhook + Telegram alerts
● BTC • ETH • XAU • NAS100 • EURUSD – 1m to 4h
LIFETIME VIP + WEEKLY FREE UPDATES
Launch price: $99 ONLY (50% OFF – 48h countdown started!)
Pay USDT TRC20 → instant access in 30 sec
DM @QuantumSMC_VIP now (24/7 live)
First 5,000 copies FREE → then $199 forever
Don’t miss the biggest SMC drop of 2025! 🚀
Indicadores y estrategias
Multi-EMA Strategy (Low Source)this strategy use the ema low for its functionality 8 9 110 355 and 480
oppliger trendfollow📈 Strategy Overview: SMA25 vs SMA200 – Gap Momentum Trend Strategy
This strategy is a trend-following system designed to capture strong, accelerating uptrends while exiting early when momentum begins to fade.
It uses the relationship between two moving averages — the 25-period SMA and the 200-period SMA — and monitors the gap (distance) between them as a measure of trend strength.
🟢 Entry Conditions (Go Long)
A long position is opened only when all of the following conditions are true:
Uptrend confirmation:
The 25-period SMA is above the 200-period SMA
→ confirms a clear upward trend.
Price momentum:
The closing price is above the SMA25 line,
→ showing that the market currently trades with bullish momentum.
Trend acceleration:
The gap between SMA25 and SMA200 has been increasing for the last 5 consecutive bars.
→ mathematically:
gap_t > gap_(t-1) > gap_(t-2) > gap_(t-3) > gap_(t-4)
→ indicates that the short-term trend is pulling away from the long-term trend and accelerating upward.
✅ When all three conditions are met, the strategy enters a long trade at the close of the current candle.
🔴 Exit Conditions (Close Long)
The position is closed when the uptrend starts to lose strength:
Trend deceleration:
The gap between SMA25 and SMA200 has been shrinking for 3 consecutive bars.
→ mathematically:
gap_t < gap_(t-1) < gap_(t-2)
→ signals that the short-term moving average is converging toward the long-term average, showing weakening momentum.
🚪 When this condition is met, the strategy closes the position at market price.
⚙️ Summary of Logic
Phase Condition Meaning
Entry SMA25 > SMA200 Long-term trend is up
Entry Close > SMA25 Short-term momentum is bullish
Entry Gap rising 5 bars Trend is accelerating
Exit Gap falling 3 bars Trend is weakening
💡 Interpretation
This strategy aims to:
Enter only when a strong, accelerating uptrend is confirmed.
Stay in the trade as long as momentum remains intact.
Exit early when the market starts losing strength, before the trend fully reverses.
It works best in trending markets and helps avoid false entries during sideways or weak phases.
ORB - Openning Range BreakoutORB - Opening Range Breakout (Indicator)
This indicator visualizes the Opening Range Breakout (ORB) for the New York market session (9:30 AM – 4:00 PM NY), highlighting the High and Low of the first 5 minutes of the session.
Key Features:
Automatically calculates the High and Low of the 9:30 AM candle and updates if subsequent candles expand the range within the first 5 minutes.
Plots invisible lines representing the High and Low of the opening range throughout the session.
Fills the area between High and Low with a semi-transparent background, clearly showing the opening range zone.
Works on any intraday timeframe and adapts automatically to the NY session.
Perfect for breakout strategies, visually marking early support and resistance zones.
How to Use:
The shaded area between High and Low indicates the opening range.
Traders can watch for breakouts above the High or breakdowns below the Low for potential entry signals.
Can be combined with trend or volume indicators for confirmation.
Notes:
The session is automatically calculated using New York time.
Background transparency can be adjusted to your preference.
RSI MTF Table - 12 Pairs (1,5,15)
The relative strength index measures the speed and magnitude of an asset's recent price changes. Therefore, it is considered a momentum indicator in technical analysis. Essentially, the RSI is the ratio of the days an asset's value increases to decreases over a given period.
Generally speaking, if the RSI is around 50, we do not expect strong movements. RSI above 65 or below 35 are areas we expect. In this context, this chart and the general momentum in 1-5-15 minutes allow us to quickly determine the parity we will trade. It is useful for intraday trading and scalping.
GC Scalping Plan - No Stop LossLevels for Gold...........................................................................................................................................................
ALN Sessions Box Breakout — Auto- DSTDevoleper: Sheikh Rakib
What it does
This indicator draws session range boxes for Asia (Dhaka), London, and New York using each market’s own local time (DST-aware). After a session closes, it watches for the first close above the session high or below the session low and then marks that breakout once per session with clear chart markers and optional alerts.
Key features
Auto-DST, per-city timezones
London session uses Europe/London
New York session uses America/New_York
Asia session uses Asia/Dhaka
Your chart timezone doesn’t matter—the sessions track real local hours.
Clean range boxes with adjustable opacity and optional outlines.
Session labels that auto-center at the end of each session.
One-shot breakout signals per session:
Triangle up when price closes above the session high.
Triangle down when price closes below the session low.
Built-in alerts for: session starts and each breakout direction.
Inputs
London / New York / Asia (Dhaka)
Show Session: toggle each session on/off
Time Range: default London 08:00–17:00 (local), New York 08:00–17:00 (local), Asia 06:00–15:00 (Dhaka)
Colour: box color for each session
Settings
Show Session Labels
Show Range Outline
Opacity Preset: Dark / Medium / Light
(UTC Offset input is kept for display, not used in session detection.)
Visuals & alerts
Boxes extend from session open to close, continually updating the high/low.
When the session ends, the final high/low are locked in, the label is centered, and the indicator begins monitoring for a breakout.
Alerts
Session start: Asia/London/New York
Breakouts: “High Breakout” (close > high) and “Low Breakout” (close < low) for each session
Create alerts from the TradingView alert dialog and choose the desired alertcondition.
Logic notes (how signals fire)
While a session is open, its box grows to contain all highs/lows.
On the first bar after close, the script starts listening for a breakout:
Close > session high → one up signal (fires once)
Close < session low → one down signal (fires once)
When the next same session begins, internal flags reset and a new box starts—so signals are inherently scoped to the period between that session’s close and its next open.
Tips
Use on intraday timeframes (e.g., 1m–30m) for clearer box structure.
If you only want specific markets, toggle others off for a cleaner chart.
For systematic entries, combine with your trend/volatility filters and use the breakout alerts as triggers or confirmations—this script doesn’t place trades.
Disclaimer: Market timing and risk management are your responsibility. Past session behavior does not guarantee future performance.
ALN Sessions Box — Auto- DSTDevoleper: Sheikh Rakib
What it does
Draws candle-synced high/low range boxes for the three major sessions—Asia (Dhaka view), London, and New York—on any timeframe. London and New York are DST-aware (times auto-shift on DST changes). Boxes update live with session high/low and close exactly on the session’s final bar.
Key features
Auto-DST: Uses Europe/London and America/New_York time zones, so session windows auto-adjust when DST turns on/off.
Asia (BDT) window: Default 06:00–15:00 Asia/Dhaka (no DST).
Candle-linked boxes: Top/bottom track session High/Low; right edge finalizes on the session end bar—clean breakout zones.
Clean UI: Optional labels, outline toggle, and three opacity presets (Dark/Medium/Light).
Plug & play: Drop in, customize colors/times, done.
Inputs you can tweak
Time Range (LOCAL) for each session
Defaults: Asia 06:00–15:00 (Asia/Dhaka), London 08:00–17:00 (Europe/London), New York 08:00–17:00 (America/New_York)
For equities, switch New York to 09:30–16:00—DST handling remains automatic.
Colour per session, Show Session Labels, Show Range Outline, Opacity Preset.
UTC Offset input is retained for compatibility but not used for session detection.
Quick BDT reference (for the default 08:00–17:00 local windows)
London → DST ON (BST): 13:00–22:00 BDT · DST OFF (GMT): 14:00–23:00 BDT
New York → DST ON (EDT): 18:00–03:00 BDT (next day) · DST OFF (EST): 19:00–04:00 BDT (next day)
Asia (Dhaka) → 06:00–15:00 BDT (no DST)
Tips
If you see dotted vertical lines, that’s TradingView Session breaks (Chart Settings → Appearance). Turn off if you prefer a cleaner view.
Some symbols don’t trade during parts of a session—adjust Time Range as needed.
Labels are placed inside the box; adjust opacity/colors to suit your theme.
A sharp, professional session map for spotting breakouts, reversals, and volatility windows at a glance.
IKZ MAX# 📊 RSI + Volume Profile Integrated Indicator
## 🎯 **General Description**
An integrated indicator that combines the power of **RSI (Relative Strength Index)** and **Volume Profile** in one technical analysis tool. It blends momentum analysis with volume distribution to provide more accurate and reliable trading signals.
## 📈 **Main Components**
### 1. **RSI (Relative Strength Index)**
- **Function**: Measures the speed and magnitude of price changes
- **Levels**:
- 🟥 **Overbought (70)**: Potential selling area
- 🟩 **Oversold (30)**: Potential buying area
- ⚪ **Midline (50)**: Balance line
### 2. **Volume Profile**
- **Function**: Analyzes trading volume distribution across price levels
- **Components**:
- 🟡 **POC (Point of Control)**: Price level with highest trading volume
- 🔵 **Value Area**: Area containing 68% of trading volume around POC
## ⚡ **Trading Signals**
### 📊 **Traditional RSI Signals**
- 🟢 **RSI Buy Signal**: When RSI crosses above 30 level (oversold)
- 🔴 **RSI Sell Signal**: When RSI crosses below 70 level (overbought)
### 💪 **Strong Integrated Signals**
- 💚 **Strong Buy**: RSI in oversold + Price near POC
- 🖤 **Strong Sell**: RSI in overbought + Price near POC
## 🛠 **Adjustable Settings**
### ⚙️ **RSI Settings**
- `rsi_length`: Calculation period (default: 14)
- `rsi_overbought`: Overbought level (default: 70)
- `rsi_oversold`: Oversold level (default: 30)
- `rsi_src`: Data source (default: close price)
### 📊 **Volume Profile Settings**
- `vp_lookback`: Lookback period (number of candles)
- `vp_rows`: Number of rows (distribution precision)
- `show_vp_histogram`: Show volume histogram
- `show_poc`: Show Point of Control
- `show_value_area`: Show Value Area
## 🎨 **Visual Elements**
### 📉 **Chart Display**
- RSI line in blue color
- Colored areas for extremes (red/green)
- POC line with label
- Buy/sell signals as colored triangles
### 📋 **Information Table**
- Current RSI value and status
- Current POC price
- Value Area range
- Current active signal
- Current active volume
## 🔔 **Alert Systems**
- Alerts for traditional RSI signals
- Alerts for integrated strong signals
- Updates once per bar
## 💡 **Trading Applications**
### 1. **Support and Resistance Identification**
- POC forms strongest support/resistance levels
- Value Area defines main trading range
### 2. **Momentum and Trend Analysis**
- RSI determines current momentum strength
- Volume Profile confirms level strength
### 3. **Entry Timing**
- Enter when integrated signals converge
- Confirm momentum alignment with volume distribution
## 🚀 **Unique Features**
### ✅ **Smart Integration**
- Combines two powerful indicators in one interface
- Integrated signals provide stronger confirmation
### ✅ **Flexibility**
- Fully customizable settings
- Suitable for all timeframes
### ✅ **User-Friendly**
- Clear visual interface
- Direct and easy-to-read signals
## 📊 **Result Interpretation**
### 🟢 **Ideal Buy Scenario**
- RSI below 40 (potential upward momentum)
- Price near POC (strong support)
- Buy signal from both indicators
### 🔴 **Ideal Sell Scenario**
- RSI above 60 (potential downward momentum)
- Price near POC (strong resistance)
- Sell signal from both indicators
## ⚠️ **Important Notes**
### 🔧 For Daily Timeframe:
- `vp_lookback = 50` (lookback period)
- `rsi_length = 14` (RSI period)
### 🔧 For Hourly Timeframe:
- `vp_lookback = 100` (lookback period)
- `rsi_length = 14` (RSI period)
## 📝 **Usage Tips**
1. **Strong Signals**: Wait for confirmation from both indicators before entering trades
2. **Risk Management**: Use POC as support/resistance for stop-loss placement
3. **Timing**: Best signals occur when RSI crosses critical levels with Volume Profile confirmation
## ⚠️ **Warning**
This indicator is for educational and analytical purposes only, not financial advice. Always practice risk management and never trade more than you can afford to lose.
---
**📈 Enjoy Smart Trading!** 🚀
SMA25 vs SMA150 – Reentry nur bei Gap-Expansion version 1📈 Strategy: SMA25 vs. SMA150 – Reentry with Gap Expansion
This trend-following strategy trades long positions only during strong uptrends.
It combines mid-term trend confirmation (SMA150) with short-term momentum (SMA25), and includes strict entry, reentry, and exit conditions to capture sustained bullish phases while cutting weak setups early.
🟢 Entry Rules
A long position is opened only if all of the following conditions are met:
Trend filter: The closing price is above SMA150 → confirms an uptrend.
Bullish candle: Current candle closes higher than it opens.
SMA range: SMA25 is 8% to 60% above SMA150.
Momentum slope: SMA25 has increased more strongly than SMA150 over the last 5 candles and is rising.
Trend confirmation: SMA25 has remained above SMA150 for at least 5 candles.
Price distance: The close is at least 0.5% above SMA25.
Stability: The previous two candles also closed above SMA25.
Short-term breakout: Current close is higher than the last 3 closes.
Reentry condition: Allowed only after 20 candles since the last exit and only if a gap expansion occurs above the previous high.
🔴 Exit Rules
A trade is closed as soon as any of the following conditions is triggered:
Dynamic trailing exit:
Close falls 3% below the highest SMA25 value since entry.
Hard stop-loss:
The low of the candle falls 5% or more below the entry price (intrabar trigger).
Early weakness filter:
If any of the first 3 candles after entry closes below the entry price, the trade is exited immediately.
⚙️ Additional Details
Long trades only (no shorts)
No pyramiding – only one position open at a time
Chart background color:
Green = position open
Red = no position
This system targets clean, established uptrends, avoids premature entries, and exits quickly when momentum fades.
It’s designed for swing and position traders who prefer systematic, trend-based setups with tight risk control and clear structure.
W%R Pullback+EMA Trend [TS_Indie]🔰 Core Concept of the Strategy
The main idea is “Trend-Following with Momentum Pullback.”
This means trading in the direction of the main trend (defined by EMA) while using Williams %R to identify pullback entries (buying the dip or selling the rally) where momentum returns to the trend direction.
📊 Indicators Used
1. EMA Fast – Defines the short-term trend.
2. EMA Slow – Defines the long-term trend (used as a trend filter).
3. Williams %R
• Overbought zone: above -20
• Oversold zone: below -80
⚙️ Entry Rules
🔹 Buy Setup
1. EMA Fast > EMA Slow → Uptrend condition.
2. Williams %R on the previous candle dropped below -80, and on the current candle, it crosses back above -80 → indicates momentum returning to the upside.
3. Current close is above EMA Fast.
4. Entry Buy at the close of the candle where %R crosses above -80.
🎯 Entry, Stop Loss, and Take Profit
1. Entry : At the candle close where the signal occurs.
2. Stop Loss : At the lowest low between the current and previous candles.
3. Take Profit : Calculated based on entry price and stop loss distance multiplied by the Risk/Reward Ratio.
🔹 Sell Setup
1. EMA Fast < EMA Slow → Downtrend condition.
2. Williams %R on the previous candle went above -20, and on the current candle, it crosses back below -20 → indicates renewed selling momentum.
3. Current price is below EMA Fast.
4. Entry Sell at the close of the candle where %R crosses below -20.
🎯 Entry, Stop Loss, and Take Profit
1. Entry : At the candle close where the signal occurs.
2. Stop Loss : At the highest high between the current and previous candles.
3. Take Profit : Calculated based on entry price and stop loss distance multiplied by the Risk/Reward Ratio.
⚙️ Optional Parameters
• Custom Risk/Reward Ratio for Take Profit.
• Option to add ATR buffer to Stop Loss.
• Adjustable EMA Fast period.
• Adjustable EMA Slow period.
• Adjustable Williams %R period.
• Option to enable Long only / Short only positions.
• Customizable Backtest start and end date.
• Customizable trading session time.
⏰ Alert Function
Alerts display:
• Entry price
• Stop Loss price
• Take Profit price
Guys, try adjusting the parameters yourselves!
I’ve been tweaking the settings for several days and managed to get great results on XAU/USD in the 5-minute timeframe.
I think this strategy is quite interesting and could potentially deliver good results on other instruments as well.
⚠️ Disclaimer
This indicator is designed for educational and research purposes only.
It does not guarantee profits and should not be considered financial advice.
Trading in financial markets involves significant risk, including the potential loss of capital.
ADR levels+// This Pine Script™ code is subject to the terms of the Mozilla Public License 2.0 at mozilla.org
// © notprofessorgreen
//@version=5
indicator("ADR levels", shorttitle = 'ADR', overlay=true, max_bars_back=5000, max_lines_count=500)
// Error catching
if (timeframe.in_seconds() >= timeframe.in_seconds('D'))
runtime.error('Timeframe cannot be greater than Daily')
// Inputs
adr_days = input.int(10, title = 'Days', maxval=250, minval = 1)
std_x = input.float(1.0, "Scale Factor")
width = input.int(1, "Line Width")
// ADR line inputs
adr_color = input.color(color.gray, "ADR Color")
adr_style = input.string("solid", "ADR Style", options= )
// Standard deviation inputs
std_dev_0_5 = input.float(0.5, "Std Dev 1 Multiplier", minval=0.1, maxval=5.0)
std_0_5_show = input.bool(true, "Show Std Dev 1", inline="std1")
std_0_5_color = input.color(color.gray, "Std Dev 1 Color", inline="std1")
std_0_5_style = input.string("dotted", "Std Dev 1 Style", options= , inline="std1")
std_dev_1 = input.float(1.0, "Std Dev 2 Multiplier", minval=0.1, maxval=5.0)
std_1_show = input.bool(true, "Show Std Dev 2", inline="std2")
std_1_color = input.color(color.gray, "Std Dev 2 Color", inline="std2")
std_1_style = input.string("dotted", "Std Dev 2 Style", options= , inline="std2")
std_dev_2 = input.float(2.0, "Std Dev 3 Multiplier", minval=0.1, maxval=5.0)
std_2_show = input.bool(true, "Show Std Dev 3", inline="std3")
std_2_color = input.color(color.gray, "Std Dev 3 Color", inline="std3")
std_2_style = input.string("dotted", "Std Dev 3 Style", options= , inline="std3")
// Fibonacci inputs
fib_1_level = input.float(0.3, "Fib Level 1", minval=0, maxval=2.0)
fib_1_show = input.bool(true, "Show Fib 1", inline="fib1")
fib_1_color = input.color(color.blue, "Fib 1 Color", inline="fib1")
fib_1_style = input.string("dashed", "Fib 1 Style", options= , inline="fib1")
fib_2_level = input.float(0.5, "Fib Level 2", minval=0, maxval=2.0)
fib_2_show = input.bool(true, "Show Fib 2", inline="fib2")
fib_2_color = input.color(color.blue, "Fib 2 Color", inline="fib2")
fib_2_style = input.string("dashed", "Fib 2 Style", options= , inline="fib2")
fib_3_level = input.float(0.7, "Fib Level 3", minval=0, maxval=2.0)
fib_3_show = input.bool(true, "Show Fib 3", inline="fib3")
fib_3_color = input.color(color.blue, "Fib 3 Color", inline="fib3")
fib_3_style = input.string("dashed", "Fib 3 Style", options= , inline="fib3")
show_labels = input.bool(true, "Show Labels")
// Stats table inputs
show_stats = input.bool(true, "Show Table")
sample_size = input.bool(true, "Show Sample Sizes")
tbl_loc = input.string('Bottom Right', "Table", options = )
tbl_size = input.string('Tiny', "", options = )
rch_color = input.color(color.rgb(3, 131, 99, 70), "Reached ")
csd_color = input.color(color.rgb(127, 1, 185, 70), "Closed Through ")
// Function to convert style string to line style
get_line_style(string style) =>
switch style
"solid" => line.style_solid
"dashed" => line.style_dashed
"dotted" => line.style_dotted
// Variables
reset = session.islastbar_regular
var float track_highs = 0.00
var float track_lows = 0.00
var float today_adr = 0.00
var adrs = array.new_float(adr_days, 0.00)
var line adr_pos = na
var line adr_neg = na
var line fib_1_pos = na
var line fib_1_neg = na
var line fib_2_pos = na
var line fib_2_neg = na
var line fib_3_pos = na
var line fib_3_neg = na
var line std_0_5_pos = na
var line std_0_5_neg = na
var line std_1_pos = na
var line std_1_neg = na
var line std_2_pos = na
var line std_2_neg = na
var label fib_1_pos_lbl = na
var label fib_1_neg_lbl = na
var label fib_2_pos_lbl = na
var label fib_2_neg_lbl = na
var label fib_3_pos_lbl = na
var label fib_3_neg_lbl = na
var label adr_pos_lbl = na
var label adr_neg_lbl = na
var label std_0_5_pos_lbl = na
var label std_0_5_neg_lbl = na
var label std_1_pos_lbl = na
var label std_1_neg_lbl = na
var label std_2_pos_lbl = na
var label std_2_neg_lbl = na
// ADR calculation
track_highs := reset ? high : math.max(high, track_highs )
track_lows := reset ? low : math.min(low, track_lows )
if reset
array.unshift(adrs, math.round_to_mintick(track_highs - track_lows ))
if array.size(adrs) > adr_days
array.pop(adrs)
today_adr := math.round_to_mintick(array.avg(adrs))
// Delete previous lines and labels
line.delete(adr_pos )
line.delete(adr_neg )
line.delete(fib_1_pos )
line.delete(fib_1_neg )
line.delete(fib_2_pos )
line.delete(fib_2_neg )
line.delete(fib_3_pos )
line.delete(fib_3_neg )
line.delete(std_0_5_pos )
line.delete(std_0_5_neg )
line.delete(std_1_pos )
line.delete(std_1_neg )
line.delete(std_2_pos )
line.delete(std_2_neg )
label.delete(fib_1_pos_lbl )
label.delete(fib_1_neg_lbl )
label.delete(fib_2_pos_lbl )
label.delete(fib_2_neg_lbl )
label.delete(fib_3_pos_lbl )
label.delete(fib_3_neg_lbl )
label.delete(adr_pos_lbl )
label.delete(adr_neg_lbl )
label.delete(std_0_5_pos_lbl )
label.delete(std_0_5_neg_lbl )
label.delete(std_1_pos_lbl )
label.delete(std_1_neg_lbl )
label.delete(std_2_pos_lbl )
label.delete(std_2_neg_lbl )
// Draw ADR lines
adr_pos := line.new(bar_index, open + today_adr, bar_index+50, open + today_adr,
width=width, color=adr_color, style=get_line_style(adr_style))
adr_neg := line.new(bar_index, open - today_adr, bar_index+50, open - today_adr,
width=width, color=adr_color, style=get_line_style(adr_style))
// Draw ADR labels
if show_labels
adr_pos_lbl := label.new(bar_index+50, open + today_adr, "ADR High (" + str.tostring(adr_days) + "D)",
xloc=xloc.bar_index, textalign=text.align_left, textcolor=adr_color, color=color.new(color.blue, 90), style=label.style_none)
adr_neg_lbl := label.new(bar_index+50, open - today_adr, "ADR Low (" + str.tostring(adr_days) + "D)",
xloc=xloc.bar_index, textalign=text.align_left, textcolor=adr_color, color=color.new(color.red, 90), style=label.style_none)
// Calculate deviations
var float half_dev = na
var float one_dev = na
var float two_dev = na
half_dev := today_adr * std_dev_0_5
one_dev := today_adr * std_dev_1
two_dev := today_adr * std_dev_2
// Draw standard deviation lines (with show/hide options)
if std_0_5_show
std_0_5_pos := line.new(bar_index, (open + today_adr) + half_dev, bar_index+50, (open + today_adr) + half_dev,
width=width, color=std_0_5_color, style=get_line_style(std_0_5_style))
std_0_5_neg := line.new(bar_index, (open - today_adr) - half_dev, bar_index+50, (open - today_adr) - half_dev,
width=width, color=std_0_5_color, style=get_line_style(std_0_5_style))
if show_labels
std_0_5_pos_lbl := label.new(bar_index+50, (open + today_adr) + half_dev, "Std " + str.tostring(std_dev_0_5),
xloc=xloc.bar_index, textalign=text.align_left, textcolor=std_0_5_color, color=color.new(#000000,100), style=label.style_none)
std_0_5_neg_lbl := label.new(bar_index+50, (open - today_adr) - half_dev, "Std -" + str.tostring(std_dev_0_5),
xloc=xloc.bar_index, textalign=text.align_left, textcolor=std_0_5_color, color=color.new(#000000,100), style=label.style_none)
if std_1_show
std_1_pos := line.new(bar_index, (open + today_adr) + one_dev, bar_index+50, (open + today_adr) + one_dev,
width=width, color=std_1_color, style=get_line_style(std_1_style))
std_1_neg := line.new(bar_index, (open - today_adr) - one_dev, bar_index+50, (open - today_adr) - one_dev,
width=width, color=std_1_color, style=get_line_style(std_1_style))
if show_labels
std_1_pos_lbl := label.new(bar_index+50, (open + today_adr) + one_dev, "Std " + str.tostring(std_dev_1),
xloc=xloc.bar_index, textalign=text.align_left, textcolor=std_1_color, color=color.new(#000000,100), style=label.style_none)
std_1_neg_lbl := label.new(bar_index+50, (open - today_adr) - one_dev, "Std -" + str.tostring(std_dev_1),
xloc=xloc.bar_index, textalign=text.align_left, textcolor=std_1_color, color=color.new(#000000,100), style=label.style_none)
if std_2_show
std_2_pos := line.new(bar_index, (open + today_adr) + two_dev, bar_index+50, (open + today_adr) + two_dev,
width=width, color=std_2_color, style=get_line_style(std_2_style))
std_2_neg := line.new(bar_index, (open - today_adr) - two_dev, bar_index+50, (open - today_adr) - two_dev,
width=width, color=std_2_color, style=get_line_style(std_2_style))
if show_labels
std_2_pos_lbl := label.new(bar_index+50, (open + today_adr) + two_dev, "Std " + str.tostring(std_dev_2),
xloc=xloc.bar_index, textalign=text.align_left, textcolor=std_2_color, color=color.new(#000000,100), style=label.style_none)
std_2_neg_lbl := label.new(bar_index+50, (open - today_adr) - two_dev, "Std -" + str.tostring(std_dev_2),
xloc=xloc.bar_index, textalign=text.align_left, textcolor=std_2_color, color=color.new(#000000,100), style=label.style_none)
// Draw Fibonacci lines
if fib_1_show
fib_1_pos := line.new(bar_index, open + today_adr * fib_1_level, bar_index+50, open + today_adr * fib_1_level,
width=width, color=fib_1_color, style=get_line_style(fib_1_style))
fib_1_neg := line.new(bar_index, open - today_adr * fib_1_level, bar_index+50, open - today_adr * fib_1_level,
width=width, color=fib_1_color, style=get_line_style(fib_1_style))
if show_labels
fib_1_pos_lbl := label.new(bar_index+50, open + today_adr * fib_1_level, "Fib " + str.tostring(fib_1_level),
xloc=xloc.bar_index, textalign=text.align_left, textcolor=fib_1_color, color=color.new(#000000,100), style=label.style_none)
fib_1_neg_lbl := label.new(bar_index+50, open - today_adr * fib_1_level, "Fib -" + str.tostring(fib_1_level),
xloc=xloc.bar_index, textalign=text.align_left, textcolor=fib_1_color, color=color.new(#000000,100), style=label.style_none)
if fib_2_show
fib_2_pos := line.new(bar_index, open + today_adr * fib_2_level, bar_index+50, open + today_adr * fib_2_level,
width=width, color=fib_2_color, style=get_line_style(fib_2_style))
fib_2_neg := line.new(bar_index, open - today_adr * fib_2_level, bar_index+50, open - today_adr * fib_2_level,
width=width, color=fib_2_color, style=get_line_style(fib_2_style))
if show_labels
fib_2_pos_lbl := label.new(bar_index+50, open + today_adr * fib_2_level, "Fib " + str.tostring(fib_2_level),
xloc=xloc.bar_index, textalign=text.align_left, textcolor=fib_2_color, color=color.new(#000000,100), style=label.style_none)
fib_2_neg_lbl := label.new(bar_index+50, open - today_adr * fib_2_level, "Fib -" + str.tostring(fib_2_level),
xloc=xloc.bar_index, textalign=text.align_left, textcolor=fib_2_color, color=color.new(#000000,100), style=label.style_none)
if fib_3_show
fib_3_pos := line.new(bar_index, open + today_adr * fib_3_level, bar_index+50, open + today_adr * fib_3_level,
width=width, color=fib_3_color, style=get_line_style(fib_3_style))
fib_3_neg := line.new(bar_index, open - today_adr * fib_3_level, bar_index+50, open - today_adr * fib_3_level,
width=width, color=fib_3_color, style=get_line_style(fib_3_style))
if show_labels
fib_3_pos_lbl := label.new(bar_index+50, open + today_adr * fib_3_level, "Fib " + str.tostring(fib_3_level),
xloc=xloc.bar_index, textalign=text.align_left, textcolor=fib_3_color, color=color.new(#000000,100), style=label.style_none)
fib_3_neg_lbl := label.new(bar_index+50, open - today_adr * fib_3_level, "Fib -" + str.tostring(fib_3_level),
xloc=xloc.bar_index, textalign=text.align_left, textcolor=fib_3_color, color=color.new(#000000,100), style=label.style_none)
else
today_adr := today_adr
line.set_x2(adr_pos, bar_index+50)
line.set_x2(adr_neg, bar_index+50)
if show_labels
label.set_x(adr_pos_lbl, bar_index+50)
label.set_x(adr_neg_lbl, bar_index+50)
if std_0_5_show
line.set_x2(std_0_5_pos, bar_index+50)
line.set_x2(std_0_5_neg, bar_index+50)
if show_labels
label.set_x(std_0_5_pos_lbl, bar_index+50)
label.set_x(std_0_5_neg_lbl, bar_index+50)
if std_1_show
line.set_x2(std_1_pos, bar_index+50)
line.set_x2(std_1_neg, bar_index+50)
if show_labels
label.set_x(std_1_pos_lbl, bar_index+50)
label.set_x(std_1_neg_lbl, bar_index+50)
if std_2_show
line.set_x2(std_2_pos, bar_index+50)
line.set_x2(std_2_neg, bar_index+50)
if show_labels
label.set_x(std_2_pos_lbl, bar_index+50)
label.set_x(std_2_neg_lbl, bar_index+50)
if fib_1_show
line.set_x2(fib_1_pos, bar_index+50)
line.set_x2(fib_1_neg, bar_index+50)
if show_labels
label.set_x(fib_1_pos_lbl, bar_index+50)
label.set_x(fib_1_neg_lbl, bar_index+50)
if fib_2_show
line.set_x2(fib_2_pos, bar_index+50)
line.set_x2(fib_2_neg, bar_index+50)
if show_labels
label.set_x(fib_2_pos_lbl, bar_index+50)
label.set_x(fib_2_neg_lbl, bar_index+50)
if fib_3_show
line.set_x2(fib_3_pos, bar_index+50)
line.set_x2(fib_3_neg, bar_index+50)
if show_labels
label.set_x(fib_3_pos_lbl, bar_index+50)
label.set_x(fib_3_neg_lbl, bar_index+50)
// Stats calculation
var float d_hi = high
var float d_lo = low
var float d_open = open
var float d_range = array.new_float()
var float adr_val = na
var float d_adr_hi = na
var float d_adr_lo = na
type adr_stats
int hit_adr_hi = 0
int hit_adr_lo = 0
int hit_adr_both = 0
int thru_adr_hi = 0
int thru_adr_lo = 0
int hit_fib_1_hi = 0
int hit_fib_1_lo = 0
int hit_fib_2_hi = 0
int hit_fib_2_lo = 0
int hit_fib_3_hi = 0
int hit_fib_3_lo = 0
int hit_std_0_5_hi = 0
int hit_std_0_5_lo = 0
int hit_std_1_hi = 0
int hit_std_1_lo = 0
int hit_std_2_hi = 0
int hit_std_2_lo = 0
int d_count = 0
var adr_sun = adr_stats.new()
var adr_mon = adr_stats.new()
var adr_tue = adr_stats.new()
var adr_wed = adr_stats.new()
var adr_thu = adr_stats.new()
var adr_fri = adr_stats.new()
var adr_sat = adr_stats.new()
if timeframe.change("D")
x = adr_mon
dow = dayofweek(time , "America/New_York")
if dow == dayofweek.tuesday
x := adr_tue
else if dow == dayofweek.wednesday
x := adr_wed
else if dow == dayofweek.thursday
x := adr_thu
else if dow == dayofweek.friday
x := adr_fri
else if dow == dayofweek.saturday
x := adr_sat
else if dow == dayofweek.sunday
x := adr_sun
if not na(adr_val)
x.d_count += 1
if d_hi > d_adr_hi
x.hit_adr_hi += 1
if d_lo < d_adr_lo
x.hit_adr_lo += 1
if d_hi > d_adr_hi and d_lo < d_adr_lo
x.hit_adr_both += 1
if close > d_adr_hi
x.thru_adr_hi += 1
if close < d_adr_lo
x.thru_adr_lo += 1
if fib_1_show
if d_hi > d_open + (adr_val * fib_1_level)
x.hit_fib_1_hi += 1
if d_lo < d_open - (adr_val * fib_1_level)
x.hit_fib_1_lo += 1
if fib_2_show
if d_hi > d_open + (adr_val * fib_2_level)
x.hit_fib_2_hi += 1
if d_lo < d_open - (adr_val * fib_2_level)
x.hit_fib_2_lo += 1
if fib_3_show
if d_hi > d_open + (adr_val * fib_3_level)
x.hit_fib_3_hi += 1
if d_lo < d_open - (adr_val * fib_3_level)
x.hit_fib_3_lo += 1
if std_0_5_show
if d_hi > d_adr_hi + (adr_val * std_dev_0_5)
x.hit_std_0_5_hi += 1
if d_lo < d_adr_lo - (adr_val * std_dev_0_5)
x.hit_std_0_5_lo += 1
if std_1_show
if d_hi > d_adr_hi + (adr_val * std_dev_1)
x.hit_std_1_hi += 1
if d_lo < d_adr_lo - (adr_val * std_dev_1)
x.hit_std_1_lo += 1
if std_2_show
if d_hi > d_adr_hi + (adr_val * std_dev_2)
x.hit_std_2_hi += 1
if d_lo < d_adr_lo - (adr_val * std_dev_2)
x.hit_std_2_lo += 1
if timeframe.change("D")
d_open := open
array.unshift(d_range, d_hi - d_lo)
if array.size(d_range) > adr_days
array.pop(d_range)
if array.size(d_range) == adr_days
adr_val := array.avg(d_range)
d_adr_hi := open + (adr_val*std_x)/2
d_adr_lo := open - (adr_val*std_x)/2
d_hi := high
d_lo := low
else
d_hi := math.max(high, d_hi)
d_lo := math.min(low, d_lo)
// Table functions
get_table_pos(pos) =>
switch pos
"Bottom Center" => position.bottom_center
"Bottom Left" => position.bottom_left
"Bottom Right" => position.bottom_right
"Middle Center" => position.middle_center
"Middle Left" => position.middle_left
"Middle Right" => position.middle_right
"Top Center" => position.top_center
"Top Left" => position.top_left
"Top Right" => position.top_right
var _loc = get_table_pos(tbl_loc)
get_table_size(size) =>
switch size
'Tiny' => size.tiny
'Small' => size.small
'Normal' => size.normal
'Large' => size.large
'Huge' => size.huge
'Auto' => size.auto
var _size = get_table_size(tbl_size)
fmt_sample(s, float pct, int count) =>
str.format("{0,number,percent}", pct) + (sample_size ? " ("+str.tostring(count)+")" : "")
// Draw table
if barstate.islast and show_stats
var tbl = table.new(_loc, 100, 100, chart.bg_color, chart.fg_color, 2, chart.fg_color, 1)
// Column headers (days + empty first cell)
table.cell(tbl, 0, 0, "Level", text_size = _size)
table.cell(tbl, 1, 0, "Mon", bgcolor = rch_color, text_size = _size)
table.cell(tbl, 2, 0, "Tue", bgcolor = rch_color, text_size = _size)
table.cell(tbl, 3, 0, "Wed", bgcolor = rch_color, text_size = _size)
table.cell(tbl, 4, 0, "Thu", bgcolor = rch_color, text_size = _size)
table.cell(tbl, 5, 0, "Fri", bgcolor = rch_color, text_size = _size)
// Row headers and data
var row = 1
table.cell(tbl, 0, row, "ADR High", text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.hit_adr_hi / adr_mon.d_count, adr_mon.hit_adr_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.hit_adr_hi / adr_tue.d_count, adr_tue.hit_adr_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.hit_adr_hi / adr_wed.d_count, adr_wed.hit_adr_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.hit_adr_hi / adr_thu.d_count, adr_thu.hit_adr_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.hit_adr_hi / adr_fri.d_count, adr_fri.hit_adr_hi), bgcolor = rch_color, text_size = _size)
row := row + 1
table.cell(tbl, 0, row, "ADR Low", text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.hit_adr_lo / adr_mon.d_count, adr_mon.hit_adr_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.hit_adr_lo / adr_tue.d_count, adr_tue.hit_adr_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.hit_adr_lo / adr_wed.d_count, adr_wed.hit_adr_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.hit_adr_lo / adr_thu.d_count, adr_thu.hit_adr_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.hit_adr_lo / adr_fri.d_count, adr_fri.hit_adr_lo), bgcolor = rch_color, text_size = _size)
row := row + 1
table.cell(tbl, 0, row, "ADR High (Close)", text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.thru_adr_hi / adr_mon.d_count, adr_mon.thru_adr_hi), bgcolor = csd_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.thru_adr_hi / adr_tue.d_count, adr_tue.thru_adr_hi), bgcolor = csd_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.thru_adr_hi / adr_wed.d_count, adr_wed.thru_adr_hi), bgcolor = csd_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.thru_adr_hi / adr_thu.d_count, adr_thu.thru_adr_hi), bgcolor = csd_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.thru_adr_hi / adr_fri.d_count, adr_fri.thru_adr_hi), bgcolor = csd_color, text_size = _size)
row := row + 1
table.cell(tbl, 0, row, "ADR Low (Close)", text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.thru_adr_lo / adr_mon.d_count, adr_mon.thru_adr_lo), bgcolor = csd_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.thru_adr_lo / adr_tue.d_count, adr_tue.thru_adr_lo), bgcolor = csd_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.thru_adr_lo / adr_wed.d_count, adr_wed.thru_adr_lo), bgcolor = csd_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.thru_adr_lo / adr_thu.d_count, adr_thu.thru_adr_lo), bgcolor = csd_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.thru_adr_lo / adr_fri.d_count, adr_fri.thru_adr_lo), bgcolor = csd_color, text_size = _size)
row := row + 1
if fib_1_show
table.cell(tbl, 0, row, "Fib " + str.tostring(fib_1_level), text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.hit_fib_1_hi / adr_mon.d_count, adr_mon.hit_fib_1_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.hit_fib_1_hi / adr_tue.d_count, adr_tue.hit_fib_1_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.hit_fib_1_hi / adr_wed.d_count, adr_wed.hit_fib_1_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.hit_fib_1_hi / adr_thu.d_count, adr_thu.hit_fib_1_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.hit_fib_1_hi / adr_fri.d_count, adr_fri.hit_fib_1_hi), bgcolor = rch_color, text_size = _size)
row := row + 1
table.cell(tbl, 0, row, "Fib -" + str.tostring(fib_1_level), text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.hit_fib_1_lo / adr_mon.d_count, adr_mon.hit_fib_1_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.hit_fib_1_lo / adr_tue.d_count, adr_tue.hit_fib_1_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.hit_fib_1_lo / adr_wed.d_count, adr_wed.hit_fib_1_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.hit_fib_1_lo / adr_thu.d_count, adr_thu.hit_fib_1_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.hit_fib_1_lo / adr_fri.d_count, adr_fri.hit_fib_1_lo), bgcolor = rch_color, text_size = _size)
row := row + 1
if fib_2_show
table.cell(tbl, 0, row, "Fib " + str.tostring(fib_2_level), text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.hit_fib_2_hi / adr_mon.d_count, adr_mon.hit_fib_2_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.hit_fib_2_hi / adr_tue.d_count, adr_tue.hit_fib_2_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.hit_fib_2_hi / adr_wed.d_count, adr_wed.hit_fib_2_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.hit_fib_2_hi / adr_thu.d_count, adr_thu.hit_fib_2_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.hit_fib_2_hi / adr_fri.d_count, adr_fri.hit_fib_2_hi), bgcolor = rch_color, text_size = _size)
row := row + 1
table.cell(tbl, 0, row, "Fib -" + str.tostring(fib_2_level), text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.hit_fib_2_lo / adr_mon.d_count, adr_mon.hit_fib_2_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.hit_fib_2_lo / adr_tue.d_count, adr_tue.hit_fib_2_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.hit_fib_2_lo / adr_wed.d_count, adr_wed.hit_fib_2_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.hit_fib_2_lo / adr_thu.d_count, adr_thu.hit_fib_2_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.hit_fib_2_lo / adr_fri.d_count, adr_fri.hit_fib_2_lo), bgcolor = rch_color, text_size = _size)
row := row + 1
if fib_3_show
table.cell(tbl, 0, row, "Fib " + str.tostring(fib_3_level), text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.hit_fib_3_hi / adr_mon.d_count, adr_mon.hit_fib_3_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.hit_fib_3_hi / adr_tue.d_count, adr_tue.hit_fib_3_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.hit_fib_3_hi / adr_wed.d_count, adr_wed.hit_fib_3_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.hit_fib_3_hi / adr_thu.d_count, adr_thu.hit_fib_3_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.hit_fib_3_hi / adr_fri.d_count, adr_fri.hit_fib_3_hi), bgcolor = rch_color, text_size = _size)
row := row + 1
table.cell(tbl, 0, row, "Fib -" + str.tostring(fib_3_level), text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.hit_fib_3_lo / adr_mon.d_count, adr_mon.hit_fib_3_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.hit_fib_3_lo / adr_tue.d_count, adr_tue.hit_fib_3_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.hit_fib_3_lo / adr_wed.d_count, adr_wed.hit_fib_3_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.hit_fib_3_lo / adr_thu.d_count, adr_thu.hit_fib_3_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.hit_fib_3_lo / adr_fri.d_count, adr_fri.hit_fib_3_lo), bgcolor = rch_color, text_size = _size)
row := row + 1
if std_0_5_show
table.cell(tbl, 0, row, "Std " + str.tostring(std_dev_0_5), text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.hit_std_0_5_hi / adr_mon.d_count, adr_mon.hit_std_0_5_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.hit_std_0_5_hi / adr_tue.d_count, adr_tue.hit_std_0_5_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.hit_std_0_5_hi / adr_wed.d_count, adr_wed.hit_std_0_5_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.hit_std_0_5_hi / adr_thu.d_count, adr_thu.hit_std_0_5_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.hit_std_0_5_hi / adr_fri.d_count, adr_fri.hit_std_0_5_hi), bgcolor = rch_color, text_size = _size)
row := row + 1
table.cell(tbl, 0, row, "Std -" + str.tostring(std_dev_0_5), text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.hit_std_0_5_lo / adr_mon.d_count, adr_mon.hit_std_0_5_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.hit_std_0_5_lo / adr_tue.d_count, adr_tue.hit_std_0_5_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.hit_std_0_5_lo / adr_wed.d_count, adr_wed.hit_std_0_5_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.hit_std_0_5_lo / adr_thu.d_count, adr_thu.hit_std_0_5_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.hit_std_0_5_lo / adr_fri.d_count, adr_fri.hit_std_0_5_lo), bgcolor = rch_color, text_size = _size)
row := row + 1
if std_1_show
table.cell(tbl, 0, row, "Std " + str.tostring(std_dev_1), text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.hit_std_1_hi / adr_mon.d_count, adr_mon.hit_std_1_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.hit_std_1_hi / adr_tue.d_count, adr_tue.hit_std_1_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.hit_std_1_hi / adr_wed.d_count, adr_wed.hit_std_1_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.hit_std_1_hi / adr_thu.d_count, adr_thu.hit_std_1_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.hit_std_1_hi / adr_fri.d_count, adr_fri.hit_std_1_hi), bgcolor = rch_color, text_size = _size)
row := row + 1
table.cell(tbl, 0, row, "Std -" + str.tostring(std_dev_1), text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.hit_std_1_lo / adr_mon.d_count, adr_mon.hit_std_1_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.hit_std_1_lo / adr_tue.d_count, adr_tue.hit_std_1_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.hit_std_1_lo / adr_wed.d_count, adr_wed.hit_std_1_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.hit_std_1_lo / adr_thu.d_count, adr_thu.hit_std_1_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.hit_std_1_lo / adr_fri.d_count, adr_fri.hit_std_1_lo), bgcolor = rch_color, text_size = _size)
row := row + 1
if std_2_show
table.cell(tbl, 0, row, "Std " + str.tostring(std_dev_2), text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.hit_std_2_hi / adr_mon.d_count, adr_mon.hit_std_2_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.hit_std_2_hi / adr_tue.d_count, adr_tue.hit_std_2_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.hit_std_2_hi / adr_wed.d_count, adr_wed.hit_std_2_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.hit_std_2_hi / adr_thu.d_count, adr_thu.hit_std_2_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.hit_std_2_hi / adr_fri.d_count, adr_fri.hit_std_2_hi), bgcolor = rch_color, text_size = _size)
row := row + 1
table.cell(tbl, 0, row, "Std -" + str.tostring(std_dev_2), text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.hit_std_2_lo / adr_mon.d_count, adr_mon.hit_std_2_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.hit_std_2_lo / adr_tue.d_count, adr_tue.hit_std_2_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.hit_std_2_lo / adr_wed.d_count, adr_wed.hit_std_2_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.hit_std_2_lo / adr_thu.d_count, adr_thu.hit_std_2_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.hit_std_2_lo / adr_fri.d_count, adr_fri.hit_std_2_lo), bgcolor = rch_color, text_size = _size)
RTH & Overnight ETH Levels (Configurable + Labels)Plots yesterday’s RTH high, low, close, today’s RTH open, and the latest overnight ETH high/low with fully customizable lines and floating labels.
SD Levels + EMASD Levels + EMA
Overview:
The SD Levels + EMA indicator combines volatility-based standard deviation levels with dual EMA signals to help traders identify potential breakout zones, overextended regions, and trend shifts. It overlays key market structure levels directly on the chart, giving a clear visual roadmap of intraday and daily strength zones.
🧠 Core Features
1. Standard Deviation Levels (SD Module)
Calculates volatility using annualized standard deviation from the selected source (hlc3 by default).
Automatically plots:
Settlement level
±0.33 SD, ±0.66 SD, ±1 SD, ±1.33 SD, ±1.66 SD, ±2 SD bands
Optionally displays:
Previous day’s high/low
Current day’s running high/low
These levels help spot volatility extremes, mean reversion zones, and breakout potential.
2. EMA Module
Plots two customizable EMAs (default = 5 and 10 periods).
Highlights bullish/bearish crossovers with clear up/down triangles.
Generates alerts for crossover events.
Includes an optional $-spaced grid (default $25) with user-defined levels above and below current price.
3. Visual & Utility Options
Optional info table showing:
Current Price
EMA 5
EMA 10
Real-time trend direction (Bullish ↑, Bearish ↓, Neutral)
Lightweight, non-repainting logic optimized for intraday timeframes.
User-friendly inputs to toggle each module independently.
⚙️ Recommended Use
Combine SD zones with EMA crossovers to confirm volatility-based breakouts or fade reversions near extremes.
The extended ±SD ladder helps traders map confluence areas between volatility expansion and EMA momentum.
🛠 Customization
Adjust SD sensitivity via level toggles and settlement source.
Modify grid spacing, number of levels, and EMA periods.
Enable/disable tables, labels, and individual components to match your charting style.
📢 Alerts
🔔 Bullish EMA Cross: EMA 5 crosses above EMA 10
🔔 Bearish EMA Cross: EMA 5 crosses below EMA 10
⚡ Summary
A hybrid indicator that merges volatility-based structure (SD levels) with trend-based momentum (EMA crosses)—ideal for traders who want to visualize both mean-reversion zones and trend continuation opportunities within a single tool.
MTF Trend - Gold/XAU with DXY FilterI published this earlier and I had it on a chart with multiple other Indicators and It was very confusing so i am publishing it again on a clean chart
This Indicator is for Gold only buy can be used in other assets If the Filter toggle is turned off in the settings
This Indicator measures the strength of the Dollar Index which will determine the direction of the Gold asset
If the DXY is weak and all timeframes align then you can tide in that direction, the opposite is true foe a strong Dollar all timeframes must be opposite to the Dollar as as DXY and Gold trade together very well it also plots a large Triangle on the chart to warn of the Direction
You can trade however you wish but it is best to sell gold when Dollar is strong and buy gold when Dollar is weak, money is moved from Dollar to Gold and Gold to Dollar when weak and strong
EMA Crossover with RSI Signals( Khalid)This script includes:
Key Features:
Strong Buy Signal: Green upward triangle below the bar when:
9 EMA crosses above 21 EMA
RSI is above 55
Strong Sell Signal: Red downward triangle above the bar when:
9 EMA crosses below 21 EMA
RSI is below 45
Visual Elements:
Yellow 9 EMA line
Orange 21 EMA line
Purple RSI line in a separate window
Clear buy/sell signals with labels
Background coloring when RSI is in buy/sell zones
Information table showing current RSI and EMA9 values
Customization:
You can adjust all parameters in the settings:
EMA lengths
RSI length
RSI buy/sell levels
How to use:
Copy this code into TradingView's Pine Editor
Add it to your chart
The signals will appear as triangles with "STRONG BUY" or "STRONG SELL" labels
Alerts will trigger when signals occur
The script also includes background coloring to help visualize when RSI is in favorable conditions for potential trades.
3 EMAs CustomizablesIt consists of 3 EMAs, each of which can be customized — you can change colors, thickness, and periods according to your trading strategy to save space on the indicators.
neeson mmf pro neeson mmf pro Indicator - Complete Guide
Overview
The neeson mmf pro is an advanced technical analysis indicator developed by neeson that combines Money Flow analysis with volume anomaly detection. This powerful tool helps traders identify potential trend reversals, overbought/oversold conditions, and unusual market activity through sophisticated algorithms and multi-timeframe analysis.
Key Features
1. Money Flow (MMF) Calculation
Core Algorithm: Calculates Money Flow based on price changes and volume data
Dual Smoothing: Uses both standard MMF and EMA-smoothed MMF for clearer signals
Multi-Timeframe Analysis: Automatically calculates higher timeframe MMF for better context
2. Volume Anomaly Detection
Smart Detection: Identifies abnormal buying and selling volume spikes
Customizable Thresholds: Adjustable volume multiplier (1.5x to 5x average volume)
Pure White Bars: Clear visual representation of volume anomalies using bright white columns
Strength Measurement: Quantifies anomaly intensity on a 0-100 scale
3. Visual Indicators
Color-Coded Zones:
Orange: Overbought conditions and MMF line
Blue: Oversold conditions and EMA line
White: Volume anomaly bars
Gray: Background and reference lines
Four Key Levels:
Oversold (default: 25)
Midline (50)
Overbought (default: 75)
Extreme zones for strong signals
How to Use
Basic Signals
Overbought/Oversold Conditions:
Regular: MMF crosses above/below threshold levels
Strong: EMA-smoothed MMF in extreme zones
Volume Anomalies:
Buying Anomaly: High volume + price increase (white bars)
Selling Anomaly: High volume + price decrease (white bars)
Divergence Trading:
Look for price making new highs/lows while MMF shows opposite momentum
Combine with volume anomalies for confirmation
Parameter Settings
MMF Length: 14 periods (adjust for sensitivity)
EMA Length: 13 periods (smoothing factor)
Volume Lookback: 20 periods (anomaly detection baseline)
Volume Threshold: 2.0x (adjust for market volatility)
Alert System
The indicator provides real-time alerts for:
MMF entering overbought/oversold zones
Strong MMF signals (EMA-based)
Volume anomaly detection with exact multiples
All alerts can be configured for sound, popup, or email notifications
Best Practices
Timeframe Selection:
Use on multiple timeframes for confirmation
Higher timeframes provide stronger signals
Market Conditions:
Works best in trending markets
Volume anomalies are particularly useful during breakouts
Risk Management:
Always use stop losses
Combine with other indicators for confirmation
Consider market context and news events
Customization Tips
Color Adjustment: Modify the orange-blue-white color scheme in settings
Sensitivity: Reduce MMF length for more signals, increase for fewer but stronger signals
Volume Settings: Adjust threshold based on asset volatility (higher for volatile markets)
⚠️ RISK DISCLAIMER
Copyright © neeson (@neeson1987)
This indicator is provided for EDUCATIONAL PURPOSES ONLY and should not be considered as financial advice. Trading involves substantial risk and is not suitable for every investor. The developer assumes no responsibility for any financial losses incurred through the use of this indicator.
IMPORTANT WARNINGS:
Past performance is not indicative of future results
Always conduct your own research before trading
Use proper risk management and position sizing
Test strategies in demo accounts before live trading
Consult with qualified financial advisors
The creator of this indicator is not a registered financial advisor and does not guarantee any specific results. Users assume full responsibility for their trading decisions.
X (Twitter): @neeson1987
Mon script//@version=5
indicator("Heikin Ashi Line", overlay=false)
// --- Heikin Ashi Calculations ---
haClose = (open + high + low + close) / 4
var float haOpen = (open + close) / 2 // initialize once
haOpen := (haOpen + haClose ) / 2 // recursive smoothing
// --- Plot as line ---
plot(haClose, title="Heikin Ashi Line", linewidth=2)
Low Volume Detector//@version=5
indicator("Low Volume Detector", overlay=true)
// Parameters
length = input.int(20, title="Volume MA Length")
threshold = input.float(0.5, title="Low Volume Threshold (as % of MA)", minval=0.1, step=0.1)
// Volume logic
vol = volume
volMA = ta.sma(vol, length)
lowVol = vol < (volMA * threshold)
// Plot background when volume is low
bgcolor(lowVol ? color.new(color.red, 85) : na, title="Low Volume Background")
// Optional: plot volume and its MA in separate pane
plot(vol, title="Volume", color=color.gray, style=plot.style_columns)
plot(volMA, title="Volume MA", color=color.orange)
DAX Sectors OverviewIt's a table with a realtime read of DAX sectors, their changes in the day, weight for the whole DAX index.
Weights are fixed values defined in the script - recommended to refresh them periodically.
Multi-Layer Pin Zone AnalyzerAnalyzes LOW (bottom wicks) and HIGH (top wicks) to detect repeated touches within a defined tolerance.
Clusters nearby pin levels and, when the number of touches exceeds a threshold, draws infinite horizontal rectangles (zones) to highlight key areas.
LOW (teal): Support zones
HIGH (red): Resistance zones
COMBINED (orange): Mixed zones using both highs and lows
Each type has independent settings for tolerance (%), minimum touches, and maximum zones.
Automatically visualizes strong support, resistance, and consolidation areas across the chart.






















