For a reset option type 2, the strike is reset in a similar way as a reset option 1. That is, the strike is reset to the asset price at a predetermined future time, if the asset price is below (above) the initial strike price for a call (put). The payoff for such a reset call is max(S - X, 0), and max(X - S, 0) for a put, where X is equal to the original strike X if not reset, and equal to the reset strike if reset. Gray and Whaley (1999) have derived a closed-form solution for the price of European reset strike options. The price of the call option is then given by (via "The Complete Guide to Option Pricing Formulas")
where b is the cost-of-carry of the underlying asset, a is the volatility of the relative price changes in the asset, and r is the risk-free interest rate. K is the strike price of the option, T1 the time to reset (in years), and T2 is its time to expiration. N(x) and M(a,b; p) are, respectively, the univariate and bivariate cumulative normal distribution functions. Further
and p = (T1/T2)^0.5. For reset options with multiple reset rights, see Dai, Kwok, and Wu (2003) and Liao and Wang (2003).
Inputs Asset price ( S ) Strike price ( K ) Reset time ( T1 ) Time to maturity ( T2 ) Risk-free rate ( r ) Cost of carry ( b ) Volatility ( s )
Numerical Greeks or Greeks by Finite Difference Analytical Greeks are the standard approach to estimating Delta, Gamma etc... That is what we typically use when we can derive from closed form solutions. Normally, these are well-defined and available in text books. Previously, we relied on closed form solutions for the call or put formulae differentiated with respect to the Black Scholes parameters. When Greeks formulae are difficult to develop or tease out, we can alternatively employ numerical Greeks - sometimes referred to finite difference approximations. A key advantage of numerical Greeks relates to their estimation independent of deriving mathematical Greeks. This could be important when we examine American options where there may not technically exist an exact closed form solution that is straightforward to work with. (via VinegarHill FinanceLabs)
Numerical Greeks Outputs Delta D Elasticity L Gamma G DGammaDvol GammaP G Vega DvegaDvol VegaP Theta Q (1 day) Rho r Rho futures option r Phi/Rho2 Carry DDeltaDvol Speed Strike Delta Strike gamma
Things to know Only works on the daily timeframe and for the current source price. You can adjust the text size to fit the screen
Siguiendo fielmente el espíritu de TradingView, el autor de este script lo ha publicado en código abierto, permitiendo que otros traders puedan entenderlo y verificarlo. ¡Olé por el autor! Puede utilizarlo de forma gratuita, pero tenga en cuenta que la reutilización de este código en la publicación se rige por las Normas internas. Puede añadir este script a sus favoritos y usarlo en un gráfico.
La información y las publicaciones que ofrecemos, no implican ni constituyen un asesoramiento financiero, ni de inversión, trading o cualquier otro tipo de consejo o recomendación emitida o respaldada por TradingView. Puede obtener información adicional en las Condiciones de uso.