Library "FunctionKellyCriterion" Kelly criterion methods. the kelly criterion helps with the decision of how much one should invest in a asset as long as you know the odds and expected return of said asset.
simplified(win_p, rr) simplified version of the kelly criterion formula. Parameters: win_p: float, probability of winning. rr: float, reward to risk rate. Returns: float, optimal fraction to risk. usage: simplified(0.55, 1.0)
partial(win_p, loss_p, win_rr, loss_rr) general form of the kelly criterion formula. Parameters: win_p: float, probability of the investment returns a positive outcome. loss_p: float, probability of the investment returns a negative outcome. win_rr: float, reward on a positive outcome. loss_rr: float, reward on a negative outcome. Returns: float, optimal fraction to risk. usage: partial(0.6, 0.4, 0.6, 0.1)
from_returns(returns) Calculate the fraction to invest from a array of returns. Parameters: returns: array<float> trade/asset/strategy returns. Returns: float, optimal fraction to risk. usage: from_returns(array.from(0.1,0.2,0.1,-0.1,-0.05,0.05))
final_f(fraction, max_expected_loss) Final fraction, eg. if fraction is 0.2 and expected max loss is 10% then you should size your position as 0.2/0.1=2 (leverage, 200% position size). Parameters: fraction: float, aproximate percent fraction invested. max_expected_loss: float, maximum expected percent on a loss (ex 10% = 0.1). Returns: float, final fraction to invest. usage: final_f(0.2, 0.5)
hpr(fraction, trade, biggest_loss) Holding Period Return function Parameters: fraction: float, aproximate percent fraction invested. trade: float, profit or loss in a trade. biggest_loss: float, value of the biggest loss on record. Returns: float, multiplier of effect on equity so that a win of 5% is 1.05 and loss of 5% is 0.95. usage: hpr(fraction=0.05, trade=0.1, biggest_loss=-0.2)
twr(returns, rr, eps) Terminal Wealth Relative, returns a multiplier that can be applied to the initial capital that leadds to the final balance. Parameters: returns: array<float>, list of trade returns. rr: float , reward to risk rate. eps: float , minimum resolution to void zero division. Returns: float, optimal fraction to invest. usage: twr(returns=array.from(0.1,-0.2,0.3), rr=0.6)
ghpr(returns, rr, eps) Geometric mean Holding Period Return, represents the average multiple made on the stake. Parameters: returns: array<float>, list of trade returns. rr: float , reward to risk rate. eps: float , minimum resolution to void zero division. Returns: float, multiplier of effect on equity so that a win of 5% is 1.05 and loss of 5% is 0.95. usage: ghpr(returns=array.from(0.1,-0.2,0.3), rr=0.6)
run_coin_simulation(fraction, initial_capital, n_series, n_periods) run multiple coin flipping (binary outcome) simulations. Parameters: fraction: float, fraction of capital to bet. initial_capital: float, capital at the start of simulation. n_series: int , number of simulation series. n_periods: int , number of periods in each simulation series. Returns: matrix<float>(n_series, n_periods), matrix with simulation results per row. usage: run_coin_simulation(fraction=0.1)
run_asset_simulation(returns, fraction, initial_capital) run a simulation over provided returns. Parameters: returns: array<float>, trade, asset or strategy percent returns. fraction: float , fraction of capital to bet. initial_capital: float , capital at the start of simulation. Returns: array<float>, array with simulation results. usage: run_asset_simulation(returns=array.from(0.1,-0.2,0.-3,0.4), fraction=0.1)
strategy_win_probability() calculate strategy() current probability of positive outcome in a trade.
strategy_avg_won() calculate strategy() current average won on a trade with positive outcome.
strategy_avg_loss() calculate strategy() current average lost on a trade with negative outcome.
Siguiendo fielmente el espíritu TradingView, el autor ha publicado este código Pine como una biblioteca de código abierto, permitiendo que otros programadores de Pine en nuestra comunidad lo utilicen de nuevo. ¡Olé por el autor! Puede utilizar esta biblioteca de forma privada o en otras publicaciones de código abierto, pero tenga en cuenta que la reutilización de este código en una publicación se rige por las Normas internas.
La información y las publicaciones que ofrecemos, no implican ni constituyen un asesoramiento financiero, ni de inversión, trading o cualquier otro tipo de consejo o recomendación emitida o respaldada por TradingView. Puede obtener información adicional en las Condiciones de uso.