MLLossFunctions

Methods for Loss functions.
mse(expects, predicts) Mean Squared Error (MSE) " MSE = 1/N * sum((y - y')^2) ".
Parameters:
expects: float array, expected values.
predicts: float array, prediction values.
Returns: float
binary_cross_entropy(expects, predicts) Binary Cross-Entropy Loss (log).
Parameters:
expects: float array, expected values.
predicts: float array, prediction values.
Returns: float
Biblioteca Pine
Siguiendo fielmente el espíritu de TradingView, el autor ha publicado este código Pine como una biblioteca de código, permitiendo que otros programadores de Pine en nuestra comunidad puedan volver a utilizarlo. ¡Un brindis por el autor! Puede utilizar esta biblioteca de forma privada o en otras publicaciones de código abierto, pero tenga en cuenta que la reutilización de este código en publicaciones se rige por las Normas internas.
Exención de responsabilidad
Biblioteca Pine
Siguiendo fielmente el espíritu de TradingView, el autor ha publicado este código Pine como una biblioteca de código, permitiendo que otros programadores de Pine en nuestra comunidad puedan volver a utilizarlo. ¡Un brindis por el autor! Puede utilizar esta biblioteca de forma privada o en otras publicaciones de código abierto, pero tenga en cuenta que la reutilización de este código en publicaciones se rige por las Normas internas.