# FunctionMatrixCovariance

Library "FunctionMatrixCovariance"
In probability theory and statistics, a covariance matrix (also known as auto-covariance matrix, dispersion matrix, variance matrix, or variance–covariance matrix) is a square matrix giving the covariance between each pair of elements of a given random vector.
Intuitively, the covariance matrix generalizes the notion of variance to multiple dimensions. As an example, the variation in a collection of random points in two-dimensional space cannot be characterized fully by a single number, nor would the variances in the `x` and `y` directions contain all of the necessary information; a `2 × 2` matrix would be necessary to fully characterize the two-dimensional variation.
Any covariance matrix is symmetric and positive semi-definite and its main diagonal contains variances (i.e., the covariance of each element with itself).
The covariance matrix of a random vector `X` is typically denoted by `Kxx`, `Σ` or `S`.
~wikipedia.

method cov(M, bias)
Estimate Covariance matrix with provided data.
Namespace types: matrix<float>
Parameters:
M (matrix<float>): `matrix<float>` Matrix with vectors in column order.
bias (bool)
Returns: Covariance matrix of provided vectors.

---
en.wikipedia.org/wiki/Covariance_matrix
numpy.org/doc/stable...rated/numpy.cov.html
Biblioteca Pine

Siguiendo el verdadero espíritu de TradingView, el autor de este código de Pine lo ha publicado como biblioteca de código abierto, para que el resto de programadores de Pine de esta comunidad puedan volver a utilizarlo. ¡Un hurra por el autor! Puede utilizar esta biblioteca de forma privada o en otras publicaciones de código abierto, pero debe ceñirse a lo establecido en las Normas internas.