FunctionSMCMC

Methods to implement Markov Chain Monte Carlo Simulation (MCMC)
markov_chain(weights, actions, target_path, position, last_value) a basic implementation of the markov chain algorithm
Parameters:
weights: float array, weights of the Markov Chain.
actions: float array, actions of the Markov Chain.
target_path: float array, target path array.
position: int, index of the path.
last_value: float, base value to increment.
Returns: void, updates target array
mcmc(weights, actions, start_value, n_iterations) uses a monte carlo algorithm to simulate a markov chain at each step.
Parameters:
weights: float array, weights of the Markov Chain.
actions: float array, actions of the Markov Chain.
start_value: float, base value to start simulation.
n_iterations: integer, number of iterations to run.
Returns: float array with path.
Biblioteca Pine
Siguiendo fielmente el espíritu de TradingView, el autor ha publicado este código Pine como una biblioteca de código, permitiendo que otros programadores de Pine en nuestra comunidad puedan volver a utilizarlo. ¡Un brindis por el autor! Puede utilizar esta biblioteca de forma privada o en otras publicaciones de código abierto, pero tenga en cuenta que la reutilización de este código en publicaciones se rige por las Normas internas.
Exención de responsabilidad
Biblioteca Pine
Siguiendo fielmente el espíritu de TradingView, el autor ha publicado este código Pine como una biblioteca de código, permitiendo que otros programadores de Pine en nuestra comunidad puedan volver a utilizarlo. ¡Un brindis por el autor! Puede utilizar esta biblioteca de forma privada o en otras publicaciones de código abierto, pero tenga en cuenta que la reutilización de este código en publicaciones se rige por las Normas internas.