lastguru

VWMA with kNN Machine Learning: MFI/ADX

This is an experimental strategy that uses a Volume-weighted MA ( VWMA ) crossing together with Machine Learning kNN filter that uses ADX and MFI to predict, whether the signal is useful. k-nearest neighbours (kNN) is one of the simplest Machine Learning classification algorithms: it puts input parameters in a multidimensional space, and then when a new set of parameters are given, it makes a prediction based on plurality vote of its k neighbours.

Money Flow Index ( MFI ) is an oscillator similar to RSI , but with volume taken into account. Average Directional Index ( ADX ) is an indicator of trend strength. By putting them together on two-dimensional space and checking, whether nearby values have indicated a strong uptrend or downtrend, we hope to filter out bad signals from the MA crossing strategy.

This is an experiment, so any feedback would be appreciated. It was tested on BTC /USDT pair on 5 minute timeframe. I am planning to expand this strategy in the future to include more moving averages and filters.
Notas de prensa: fixed a misleading comment
Notas de prensa: new parameters:
  • Apply kNN filter - if you want to try just the MA crossing without the kNN filter
  • kNN minimum difference - skews the number of votes needed for the decision, so this many more votes are needed to allow taking a position (e.g., if this is 1, the position would not be taken if there are 3 agains 3 votes, but would be taken if there are 4 agains 3 votes)
Script de código abierto

Siguiendo el verdadero espíritu de TradingView, el autor de este script lo ha publicado en código abierto, para que los traders puedan entenderlo y verificarlo. ¡Un hurra por el autor! Puede utilizarlo de forma gratuita, aunque si vuelve a utilizar este código en una publicación, debe cumplir con lo establecido en las Normas internas. Puede añadir este script a sus favoritos y usarlo en un gráfico.

¿Quiere utilizar este script en un gráfico?